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Recent Advances in Human Quantitative-Trait–Locus Mapping:
Comparison of Methods for Discordant Sibling Pairs
Jin P. Szatkiewicz,1 Karen T.Cuenco,2 and Eleanor Feingold2

Departments of 1Biostatistics and 2Human Genetics, University of Pittsburgh, Pittsburgh

Extreme discordant sibling pairs (EDSPs) are theoretically powerful for the mapping of quantitative-trait loci (QTLs)
in humans. EDSPs have not been used much in practice, however, because of the need to screen very large populations
to find enough pairs that are extreme and discordant. Given appropriate statistical methods, another alternative is
to use moderately discordant sibling pairs (MDSPs)—pairs that are discordant but not at the far extremes of the
distribution. Such pairs can be powerful yet far easier to collect than extreme discordant pairs. Recent work on
statistical methods for QTL mapping in humans has included a number of methods that, though not developed
specifically for discordant pairs, may well be powerful for MDSPs and possibly even EDSPs. In the present article,
we survey the new statistics and discuss their applicability to discordant pairs. We then use simulation to study the
type I error and the power of various statistics for EDSPs and for MDSPs. We conclude that the best statistic(s)
for discordant pairs (moderate or extreme) is (are) to be found among the new statistics. We suggest that the new
statistics are appropriate for many other designs as well—and that, in fact, they open the way for the exploration
of entirely novel designs.

Introduction

The extreme discordant sibling pair (EDSP) design is
generally attributed to Risch and Zhang (1995). The
basic idea of the EDSP design is that, if phenotyping is
relatively easy, then one can screen a large population
of sibling pairs and genotype only those pairs that are
most powerful for the detection of linkage. The simplest
version of the design uses only those pairs in which one
sibling has a trait value in the top 10% of the trait
distribution and the other sibling has a trait value in the
bottom 10% of the trait distribution. The EDSP idea
was further developed in articles such as those by Risch
and Zhang (1996), Gu et al. (1996), Kruse et al. (1997),
Rogus et al. (1997), and Knapp (1998). These authors
studied the power of several variations on EDSP sam-
pling, including the extreme discordant and concordant
(EDAC) design, which includes pairs in which both sib-
lings are in the top 10% or both siblings are in the
bottom 10%. Despite theoretical development, the EDSP
and EDAC designs have only occasionally been used in
practice. Only those investigators who have very large
populations to work with and relatively low phenotyp-
ing costs have found such studies to be practical. For
example, Xu et al. (1999) screened 1200,000 people in
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Anqing, China, to ascertain 207 extreme discordant and
357 extreme concordant pairs for blood pressure, and
Fullerton et al. (2003) screened 20,427 independent sib-
ships to get a final data set of 182 discordant and 379
concordant pairs for neuroticism.

The reason for the historical emphasis on extreme
discordant pairs has to do with the statistical test that
is used to detect linkage. In a standard EDSP study, one
tests for linkage by estimating the average number of
alleles shared identical by descent (IBD) between the
pairs at a marker. If the marker locus is linked to the
trait, then the mean IBD-sharing score should be less
than the null-hypothesis expectation. This is the same
test statistic (tested in the opposite direction) as is used
for affected-sibling-pair mapping of binary disease traits
(e.g., see Blackwelder and Elston 1985). However, the
IBD-sharing statistic is not very powerful unless the
pairs are drawn from the extremes of the distribution.
This is because the power of the statistic comes purely
from the fact that the trait values are extreme; it does
not use the actual trait values in any way.

More recently, the suggestion has been made that one
can use different statistics for discordant pairs—statis-
tics that not only use information about the IBD sharing
but also incorporate information about the trait values.
Such statistics can make it possible to use less extreme
samples and might make discordant-pair studies more
practical. Forrest and Feingold (2000) suggested using
a composite statistic that is a weighted sum of the IBD-
sharing statistic and the Haseman and Elston (1972)
statistic. The composite statistic is only slightly more
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powerful than the IBD-sharing statistic for EDSP sam-
ples, but the advantage is greater for moderately dis-
cordant sibling pairs (MDSPs), defined arbitrarily by
Forrest and Feingold (2000) as pairs with one sibling
in the top 35% of the distribution and one sibling in
the bottom 35% of the distribution. The existence of a
powerful statistic for MDSPs makes it possible to con-
sider that design as a compromise between EDSPs and
population sampling. For example, under one trait
model that Forrest and Feingold (2000) studied, one
could achieve 80% power by screening 8,700 pairs to
ascertain 55 EDSPs, or by screening 1,850 pairs to as-
certain 300 MDSPs, or by using a population sample
of 950 pairs.

In addition to the Forrest and Feingold (2000) com-
posite statistic, there are several other recent methods
that may also be applicable to discordant pairs. In the
present article, we survey those statistics and then use
simulation to compare their type I error and power with
those of the IBD-sharing statistic. In the “Methods”
section, we discuss statistics for discordant pairs in more
detail and define the statistics that we consider in the
present article. We then describe our simulation meth-
ods and present our results. We conclude with a dis-
cussion of the implication of our results for other study
designs.

Methods

Statistics Considered

Discordant and concordant pairs have a property that
makes them critically different from more typical sam-
ples—they have a distorted IBD-sharing distribution at
markers that are linked to the trait. Sibling pairs from
a population sample are expected to share half of their
alleles IBD at any locus, regardless of whether that locus
is linked to the trait being studied. The same is true if
the pairs are sampled on the basis of a single individual
with an extreme trait value. However, if families are
sampled on the basis of a criterion that looks at two or
more members (which we refer to as “multiple-proband
ascertainment”), then the IBD-sharing distribution
changes at a marker linked to the trait. In the companion
article (T.Cuenco et al. 2003 [in this issue]), we sampled
pairs in which at least one sibling exceeds a threshold;
this actually qualifies as multiple-proband ascertainment
(because both phenotypes must be seen in order to decide
whether to ascertain the pair) but changes the IBD-shar-
ing distribution only very slightly. In the case of discor-
dant and concordant pairs, the change in the IBD-shar-
ing distribution is quite substantial, and this is exactly
what Risch and Zhang’s (1995) original EDSP method
sought to detect. Nonetheless, the IBD-sharing statistic

for EDSP pairs is limited in that it looks only at the IBD
sharing, ignoring the actual trait values.

Conversely, most standard human QTL-mapping
methods, which were developed with population sam-
ples in mind, do not look at the marginal distribution
of IBD sharing at all; rather, they base their power on
the detection of correlation between the IBD sharing of
each pair and the similarity of the pair’s trait values.
Hereafter, we refer to such statistics as “correlation-
based statistics.” Haseman-Elston regression (Haseman
and Elston 1972) and maximum-likelihood variance
components (e.g., see Amos 1994) are the most com-
monly used examples of correlation-based methods.

The set of correlation-based statistics has recently been
expanded quite a bit, with attempts to update the Hase-
man-Elston method (Drigalenko 1998; Elston et al.
2000; Xu et al. 2000; Forrest 2001; Sham and Purcell
2001; Visscher and Hopper 2001). There are also several
new statistics in the literature that combine information
from both the marginal IBD-sharing distribution and the
correlation (Sham et al. 2000, 2002; Sham and Purcell
2001; Tang and Siegmund 2001; Putter and Sandkuijl
2002; Wang and Huang 2002). These statistics should
be appropriate for discordant pairs, and they should be
more powerful than statistics that rely only on IBD or
only on correlation.

All of the new statistics are described in brief below
and are reviewed in more detail by Feingold (2001,
2002).

Risch and Zhang’s IBD-sharing statistic (IBD1).—Let
be the estimated mean IBD sharing for sibling pair i;pi

takes the value 0, , or 1 for a fully informative pair1pi 2

but can take intermediate values if multipoint estimates
are used. Let be the average estimated IBD sharingp̄

over all pairs in the sample. The classical linkage test
based on EDSPs (Risch and Zhang 1995) uses the
statistic

1p̄ � 2
, (1)

1�
8n

which is standardized to have mean 0 and variancep̄

1. A one-sided Z test is used to detect significantly neg-
ative values. The SD in the denominator is a theoretical
value that assumes that IBD information for each pair
is observed perfectly (i.e., that the marker is infinitely
polymorphic). This results in a conservative test when
this statistic is applied to real data in which IBD sharing
is estimated from marker data (for discussion of this
issue in the context of affected sibling pairs, see Davis
and Weeks 1997).

Robust IBD-sharing statistic (IBD2).—Instead of the
denominator used above, in equation (1), the IBD-shar-
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ing statistic can also be standardized using an empirical
SD, which yields the statistic

1
p̄ �

2
.

21 1� � p �i( )2n 2

The test based on this statistic should have correct type
I error even if the IBD information is not perfectly ob-
served. One could also consider replacing the factor of

in the denominator with , which should result in a1 p̄2

very slightly elevated type I error and power.
Original Haseman-Elston (ORIGINAL.HE).—Let

be the squared trait difference for sib-2Y p (x � x )iD i1 i2

ling pair i. The method of Haseman and Elston (1972)
simply regresses on and estimates the slope,Y piD i

� . A positive estimate for (a negative estimate forb bD D

the slope) suggests that the trait is linked to the locus
marker. A one-sided t test is used to test for any signif-
icant departure from 0.

Trait-sum regression (TRAIT.SUM).—Let Y piS

be the mean-corrected squared2[(x � m) � (x � m)]i1 i2

trait sum. We include the one-sided t test of the slope
from the regression of on .b̂ Y pS iS i

Trait-product regression (TRAIT.PRODUCT).—Under
population sampling, and are estimates of the sameˆ ˆb bD S

parameter (Drigalenko 1998). This slope parameter
should be 0 under the null hypothesis of no linkage and
should be positive (as we have defined the sign) under
the alternative hypothesis. Drigalenko (1998) suggested
averaging the two slope estimates—or, equivalently, do-
ing a single regression with the mean-corrected trait
product, , as the dependent variable.(X � m)(X � m)i1 i2

We consider the one-sided t test based on the trait-prod-
uct regression.

Forrest‘s method (FORREST).—Forrest (2001) sug-
gested a test based on the weighted average

2 2j jD Sˆ ˆ ˆb p b � b ,S D2 2 2 2j � j j � jD S D S

where and are the variances of and . These2 2 ˆ ˆj j b bD S D S

weights are optimal under the assumption that the co-
variance, , of is 0, which is true for a popu-2 ˆ ˆj (b ,b )DS D S

lation sample from a normal distribution but which is
not necessarily true otherwise (Feingold 2002). FOR-
REST estimates all the parameters simultaneously, using
iterative least squares.

Visscher and Hopper’s method (V&H).—Visscher and
Hopper (2001) proposed a test based on the same
weighted slope estimate as Forrest (2001) but with the
two variances estimated separately, by performing the
two regressions separately.

Xu et al.’s method (XU).—Xu et al. (2000) proposed

a method very similar to that of Forrest (2001) and
Visscher and Hopper (2001), but their weighted average
slope allows for a nonzero covariance between andb̂D

, using the formulab̂S

2 2 2 2j � j j � jS DS D DSˆ ˆ ˆb p b � b .D S2 2 2 2 2 2j � j � 2j j � j � 2jD S DS D S DS

Xu et al. estimate the parameters by performing the two
regressions separately, similar to V&H. The covariance
can be estimated by combining the residuals of the two
regressions.

Sham and Purcell’s method (S&P1).—The variances
and can actually be calculated analytically as func-2 2j jD S

tions of the sibling trait correlation, r, under traditional
QTL models. Sham and Purcell (2001) proposed taking
advantage of this, rather than estimating the variances
from data as in FORREST, V&H, and XU. The primary
method outlined by Sham and Purcell (2001) regresses
the dependent variable

Y YiS iD�2 2(1 � r) (1 � r)

on , where the trait values and are standardizedp x xi i1 i2

to mean 0 and variance 1 before calculation of andYiS

.YiD

Sham and Purcell’s robust method (S&P2).—Sham
and Purcell (2001) also suggested a variant of their
method, regressing

Y Y 4riS iDA p � �i 2 2 2(1 � r) (1 � r) 1 � r

on , with the intercept fixed at 0. This variant1p �i 2

should be more robust to selected sampling. Even more
important, it implicitly incorporates information on any
distortion in the IBD sharing. This is because the fixed
intercept implies a null-hypothesis IBD-sharing propor-
tion of , so the regression t test draws power from any1

2

deviation from that proportion. The t statistic for the
test of the regression slope is

1� A p �i i( )2
.

2 21 11 2� ( )� A � p � � � A p �i i i in ( ) ( )[ ] [ ]{ }2 2

Asymptotic score statistic (SCORE1).—Score statistics
based on the usual variance-components likelihood were
proposed by Tang and Siegmund (2001), Wang and
Huang (2002), and Putter et al. (2002). The score sta-
tistics proposed in their articles are very similar to each
other but have minor differences in how they parame-



Szatkiewicz et al.: QTLs with Discordant Sibling Pairs 877

terize the likelihood and how they “robustify” the sta-
tistic. Instead of considering precisely the statistics in the
aforementioned articles, we take the Tang and Siegmund
(2001) statistic as our starting point and consider four
variations on possible ways to make it robust (or not).
Tang and Siegmund (2001) derived a score statistic of
the form

1�A (p � )i i
i 2

,
21 � r�2n

2 2(1 � r )

where is the same function as defined above for S&P2.Ai

The denominator of this statistic is based on asymptotic
likelihood theory, so this version of the score statistic is
not expected to be appropriate for discordant sibling
pairs.

Score statistic with partially empirical variance
(SCORE2).—Tang and Siegmund (2001) proposed mak-
ing their statistic robust by using the empirical SD of

in the denominator—that is,Ai

1�A (p � )i i
i 2

.
1 2��Ai�2 2 i

The factor of is the SD of p when a perfectly infor-1
�2 2

mative marker is assumed. Thus, this version of the sta-
tistic should be appropriate for discordant pairs but
should yield a conservative test when there is imperfect
IBD information.

Score statistic with fully empirical variance
(SCORE3).—We propose that the best version of the
score statistic should have the same form as SCORE2
but with the empirical SD of p in place of the factor of

:1
�2 2

1� A p �i i( )2
.

211 2� ( )� A � p �i in ( )2

This version should have correct type I error even with
imperfect IBD information. As with IBD2, it is also pos-
sible here to replace the factor of in the denominator1

2

with , which would give slightly higher type I errorp̄

and power.
Score statistic with empirical mean and variance

(SCORE4).—Both Wang and Huang (2002a) and Putter
et al. (2002) proposed using in place of in both the1p̄ 2

numerator and denominator of the score statistic. When

applied to our parameterization of the score statistic,
that yields the expression

( )¯� A p � pi i

.
1 2 2� ( ) ( )¯� A � p � pi in

The use of the empirical mean IBD sharing in the nu-
merator means that this version of the score statistic does
not draw any power from the distortion in IBD sharing
in discordant pairs, similar to S&P1 (whereas SCORE3
is similar to S&P2).

Composite statistic (COMPOSITE1).—Forrest and
Feingold (2000) proposed testing for linkage by using a
weighted average of ORIGINAL.HE and IBD1:

1
p̄ �ˆ�b 2Dw � w ,HE IBD

ĵD 1�
8n

where and are arbitrarily chosen weights. Onw wHE IBD

the basis of limited calculations, they recommended that
MDSPs be analyzed using equal weights and that EDSPs
be analyzed using a higher weight on the IBD-sharing
statistic. We use equal weights in the present article. Any
of the correlation-based statistics can be used in place
of ORIGINAL.HE in the composite. Forrest and Fein-
gold (2000) found that, for discordant pairs, ORIGI-
NAL.HE was the most powerful choice in the literature
at that time. In updating that investigation with all of
the correlation-based statistics, we found that ORIGI-
NAL.HE was still the most powerful, so we implemented
COMPOSITE1 as above. Note that the IBD-sharing
component of COMPOSITE1 is standardized using the
theoretical variance, so it is expected to be conservative
when there is imperfect IBD-sharing information.

Empirical composite statistic (COMPOSITE2).—The
composite can also be formed as the average of ORIG-
INAL.HE and IBD2 (instead of IBD1). This version
should have correct type I error even when there is not
perfect IBD information.

* * *

In our presentation of the results, the statistics we call
“group A” (IBD1 and IBD2) are versions of the traditional
IBD-sharing statistic. The group B statistics (ORIGI-
NAL.HE, TRAIT.SUM, TRAIT.PRODUCT, XU, V&H,
FORREST, S&P1, and SCORE4) are the correlation-
based statistics; they do not consider the marginal IBD-
sharing distribution. The group C statistics (S&P2,
SCORE1, SCORE2, SCORE3, COMPOSITE1, and
COMPOSITE2) are the statistics that consider both IBD
sharing and correlation.

We are aware of two other statistics that fall into
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Table 1

Genetic Models

PARAMETER

VALUE FOR MODEL

1 2 3 4 5 1′ 2′

Model-defining:
Type of inheritancea Add Dom Rec Add Dom Add Dom
Locus heritability .2 .2 .2 .2 .2 NA NA
Allele frequency .1 .1 .1 .5 .5 .1 .1
Trait means �1, 0, 1 0, 1, 1 0, 0, 1 �1, 0, 1 0, 1, 1 �1.6, 0, 1.6 0, 1.6, 1.6
Environmental SD .849 .785 .199 1.414 .866 NA NA
Environmental correlation .25 .25 .25 .25 .25 NA NA

Calculated:
Overall mean �.8 .19 .01 .0 .75 �1.32 .295
Overall SD .949 .877 .222 1.581 .968 2.047 1.393
Skewness .166 .141 .885 .0971 �.0991 �1.587 1.504
Kurtosis .0989 .0235 3.814 .0556 �.0714 5.268 9.406
Overall correlation .3 .3 .3 .3 .3 .25 .26

NOTE.—NA p not applicable.
a Add p additive; Dom p dominant; Rec p recessive.

group C but that we did not include in our study because
of computational limitations. One is the ascertainment-
corrected variance-components statistic proposed by
Sham et al. (2000), which conditions on trait values; this
statistic should perform very similarly to SCORE3 and
S&P2. The other statistic that we did not include is the
regression-based statistic proposed by Sham et al.
(2002); this statistic was developed for extended pedi-
grees, but, for sibling pairs, it takes the same form as
SCORE2 and SCORE3, except that the variance of p is
estimated differently.

Many of the statistics that we evaluated depend on
estimates of trait parameters. TRAIT.SUM, TRAIT
.PRODUCT, XU, V&H, FORREST, S&P1, S&P2,
SCORE1, SCORE2, SCORE3, and SCORE4 all use an
estimate of the trait mean, m. The S&P statistics and the
SCORE statistics additionally use estimates of the trait
variance, , and the sibling correlation, r. Sensitivity to2j

these estimates may have an important effect on power.

Simulations

We studied the type I error and the power of each
statistic under seven trait models, which are described
in table 1. All of the models are diallelic. Models 1–5
are simple mixture-of-normals models; the trait value is
equal to the genotype mean plus a normally distributed
“environmental” variance. There is an additional sibling
correlation of 0.25 in each model, to account for envi-
ronmental and polygenic components. The means and
the variances were chosen to give each model a locus
heritability of 0.2. Models 1′ and 2′ were generated by
simulating data under models 1 and 2, respectively, and
then taking the signed square, , of each trait value.x FxF
This yields overall trait distributions that are somewhat
skewed and have high kurtosis. Model 3 also has skew-

ness and kurtosis in the same ranges as models 1′ and
2′. Note that models 6–9 from the companion article
(T.Cuenco et al. 2003 [in this issue]) were not used here,
because, for discordant pair sampling, they are sym-
metric with other models.

Under each of the models, we simulated data for nu-
clear families with two children, and we ascertained fam-
ilies by two different methods. The first ascertainment
scheme was based on EDSPs—any pair in which one
sibling was in the top 10% of the trait distribution and
the other sibling was in the bottom 10%. The second
scheme was based on MDSPs—any pair in which one
sibling was in the top 35% and the other sibling was in
the bottom 35%. We simulated data sets of 100 families
for the EDSP samples and 500 families for the MDSP
samples. Figure 1 shows examples of simulated bivariate
trait distributions for both sampling schemes under sev-
eral of the models. To study type I error, we used 10,000
data sets, and, to study power, we used 1,000 data sets.
The nominal type I error rate was set at 0.01. Marker
data was simulated using eight equifrequent alleles, with
the marker at recombination fraction (v) 0 for the power
study and at for the type I error study. We alsov p 0.5
did power simulations at for models 1 and 2v p 0.05
only.

As discussed above (see the “Statistics Considered”
subsection), most of the statistics require that some trait
parameters (mean m, variance , and sibling correlation2j

r) be specified. In general, theory suggests that these
should be population parameter values, even for selected
samples. However, if one is using a selected sample, pop-
ulation parameter estimates may not be available. In that
situation, parameter values must be guessed or adopted
from previous studies in other populations. Using mod-
els 1 and 1′ only, we examined the robustness of the
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Figure 1 Scatterplots of population, MDSP, and EDSP samples from models 1, 2, and 1′

statistics to misspecification of parameters. We varied
one parameter at a time while holding the other two
parameters at the correct population values. Sibling cor-
relation was set at 0.1 and 0.5, trait variance was set at
values ranging from half the true value to twice the true
value, and trait mean was set at the true mean � 1 SD.
We also did a limited number of studies in which two
parameters at a time were misspecified. Finally, we
checked the performance of the statistics by using sample
estimates of the parameters.

Results

Type I Error

Table 2 shows the SD and type I error of each statistic,
based on the 10,000 simulated data sets with EDSP sam-
ples. All statistics had mean 0 for all models. All of the

statistics in this table were computed with the known
population values of the parameters (trait mean m, var-
iance , and sibling correlation r). The 95% CI for an2j

estimated error rate of 1.00% is ∼0.80%–1.20%. As
expected, the statistics that assume perfect IBD infor-
mation (IBD1, SCORE2, and COMPOSITE 1) have con-
servative type I error. V&H and FORREST also have
incorrect type I error, presumably because of the omis-
sion of the covariance term in the weighting. Finally,
SCORE1 and SCORE4 have incorrect type I error. These
results are qualitatively consistent across all models and
are also true for the MDSP samples (results not shown).
The incorrect type I error for SCORE4 is due to covar-
iance terms that are omitted from the denominator of
that statistic (for discussion, see T.Cuenco et al. 2003
[in this issue]). S&P2 and SCORE3 are very similar, with
S&P2 having a slightly higher type I error rate for most
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Table 2

SD and Type I Error for EDSP Samples

STATISTIC

SD AND TYPE I ERROR UNDER MODEL

1 2 3 4 5 1′ 2′

SD
Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%) SD

Error
(%)

Group A:
IBD1 .93 .60 .93 .69 .93 .76 .93 .77 .94 .71 .93 .73 .93 .76
IBD2 1.00 .98 1.00 .95 1.00 1.06 1.00 1.14 1.01 .99 1.00 .97 1.01 1.05

Group B:
ORIGINAL.HE 1.00 .96 1.01 1.13 1.02 1.22 1.00 1.03 1.02 1.05 1.01 1.06 1.01 .82
TRAIT.SUM 1.00 .95 1.01 .99 1.02 1.06 1.01 .91 1.00 .97 1.02 1.13 1.01 .84
TRAIT.PRODUCT 1.00 1.00 1.01 1.10 1.02 1.12 1.00 1.12 1.02 1.04 1.01 1.18 1.00 .98
XU 1.00 1.10 1.00 .98 .95 .80 1.01 1.09 1.01 1.10 .98 .89 .98 .88
V&H .75 .15 .75 .17 .39 .00 .76 .15 .78 .13 .49 .01 .54 .02
FORREST .93 .62 .94 .66 .74 .07 .94 .63 .94 .66 .66 .10 .74 .10
S&P1 1.00 .98 1.01 1.15 1.02 1.22 1.00 1.05 1.02 1.07 1.01 1.08 1.01 .87
SCORE4 .31 .00 .31 .00 .62 .00 .30 .00 .30 .00 .54 .00 .62 .00

Group C:
S&P2 1.02 1.05 1.02 1.19 1.02 1.17 1.01 1.25 1.03 1.23 1.02 1.16 1.02 1.21
SCORE1 4.61 30.34 4.56 30.34 6.10 34.96 4.36 30.37 4.65 30.69 3.99 28.56 4.80 31.75
SCORE2 .93 .60 .93 .67 .93 .61 .93 .70 .94 .70 .93 .60 .93 .56
SCORE3 1.00 .92 1.00 1.02 1.00 1.05 1.00 1.10 1.01 1.03 1.00 .92 1.01 .99
COMPOSITE1 .96 .76 .97 .90 .97 .83 .96 .91 .98 .96 .97 .75 .97 .73
COMPOSITE2 1.00 .92 1.00 1.10 1.01 1.05 1.00 1.10 1.01 1.19 1.01 .97 1.01 .98

Table 3

Power for EDSP Samples

STATISTIC

POWER UNDER MODEL

1 2 3 4 5 1′ 2′

Group A:
IBD2 .82 .91 .05 .92 .78 .81 .84

Group B:
ORIGINAL.HE .11 .05 .18 .08 .04 .05 .04
TRAIT.SUM .00 .00 .00 .00 .01 .01 .00
TRAIT.PRODUCT .11 .05 .17 .08 .05 .07 .04
XU .01 .01 .00 .02 .01 .06 .01
S&P1 .12 .05 .18 .08 .05 .06 .04

Group C:
S&P2 .88 .94 .21 .94 .83 .81 .80
SCORE3 .87 .93 .18 .94 .81 .78 .79
COMPOSITE2 .79 .78 .22 .81 .62 .66 .71

models. We did limited experiments (results not shown)
with versions of SCORE3, IBD2, and COMPOSITE2
that replaced in the denominator with (see the1 p̄2

“Methods” section). This increases the type I error of
those methods by 0.1–0.2 percentage points for the mod-
els that we studied.

Power

Table 3 gives the power for all models for the EDSP
samples, and table 4 gives the power for the MDSP sam-
ples. Again, all of the statistics in these tables were com-
puted with the known population values of the param-
eters. To make comparisons simpler, we omitted from
the power tables the statistics that did not have correct
type I error. The 95% CI for a power estimate of 50%
is ∼47%–53%.

For the EDSP samples, it is clear that most of the
linkage information is in the marginal IBD-sharing dis-
tribution, with only a small amount in the correlation
between IBD and trait differences. The group B statistics,
which rely only on correlation, have very little power.
IBD2 and the group C statistics all have very similar
power. COMPOSITE2 has somewhat lower power than
the other group C statistics, because we computed it with
equal weights on the IBD statistic and the Haseman-
Elston statistic. If COMPOSITE2 were computed with
the weights suggested by Forrest and Feingold (2000)
for EDSPs, it would probably have similar power to
S&P2 and SCORE3. Interestingly, S&P2 and SCORE3
do have slightly higher power than IBD2, except against

models 1′ and 2′, for which they have slightly lower
power. This suggests that the most nonparametric sta-
tistic may do better against nonnormal trait models.

For the MDSP samples, the group C statistics are again
the most powerful. In this case, COMPOSITE2 performs
very similarly to S&P2 and SCORE3, presumably be-
cause the weighting that we used to form the composite
is, in fact, the weighting that Forrest and Feingold (2000)
recommended for MDSPs. IBD2 has somewhat lower
power, reflecting that the group C statistics are drawing
power from both the marginal IBD-sharing distribution
and the IBD/trait-difference correlation. COMPOSITE2
outperforms S&P2 and SCORE3 precisely on the non-
normal models.
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Table 4

Power for MDSP Samples

STATISTIC

POWER UNDER MODEL

1 2 3 4 5 1′ 2′

Group A:
IBD2 .41 .50 .02 .63 .58 .45 .52

Group B:
ORIGINAL.HE .38 .32 .15 .33 .30 .10 .28
TRAIT.SUM .00 .00 .00 .00 .00 .00 .00
TRAIT.PRODUCT .34 .31 .10 .34 .28 .14 .27
XU .03 .03 .00 .04 .02 .10 .06
S&P1 .37 .32 .15 .34 .29 .11 .30

Group C:
S&P2 .73 .77 .13 .84 .79 .43 .64
SCORE3 .72 .77 .12 .84 .79 .42 .64
COMPOSITE2 .73 .77 .11 .83 .78 .49 .74

Table 5

Power for EDSP Samples—Sensitivity Analyses under Model 1

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �1.75 m p .15 2j p .45 2j p 1.8
CORRECT POPULATION

PARAMETER VALUES

Group A:
IBD2 .82 .82 .82 .82 .82 .82 .82

Group B:
ORIGINAL.HE .11 .11 .11 .11 .11 .11 .11
TRAIT.SUM .00 .00 .00 .03 .00 .00 .00
TRAIT.PRODUCT .11 .11 .04 .13 .11 .11 .11
XU .01 .01 .02 .09 .01 .01 .01
S&P1 .11 .11 .09 .13 .12 .12 .12

Group C:
S&P2 .88 .88 .88 .89 .88 .88 .88
SCORE3 .87 .87 .86 .88 .87 .87 .87
COMPOSITE2 .79 .79 .79 .79 .79 .79 .79

We did limited experiments (results not shown) with
versions of SCORE3, IBD2, and COMPOSITE2 that
replaced in the denominator with (see the “Meth-1 p̄2

ods” section). The altered SCORE3 has power very sim-
ilar to that of S&P2. The altered IBD2 and COMPOS-
ITE2 statistics also gain 1–2 percentage points in power.
We also did power simulations at for modelsv p 0.05
1 and 2 only (results not shown); although the overall
power is lower than at , the relative power of thev p 0
different statistics is unchanged.

Sensitivity

To assess the robustness of the statistics to misspeci-
fication of the trait parameters, we first tried using the
sample parameter values for each data set, rather than
the known correct values. The basic effect for both EDSP
and MDSP samples is to cut the power of the S&P1,
S&P2, and SCORE3 statistics to 0 (results not shown).
IBD2, ORIGINAL.HE, and COMPOSITE2 do not use
the parameter values at all, so they are unaffected.

A more realistic sensitivity analysis is to use parameter
values that are guessed with error. We investigated the
effect of misspecifying one parameter at a time. For each
run, we set two of the parameters to the population
values and set the third to an arbitrary “wrong guess”
(see the “Methods” section). We performed these sim-
ulations on the same two data sets, one from model 1
and one from model 1′. Tables 5–8 present these results.
For each table, we generated a single set of 1,000 data
sets and analyzed them under different assumed param-
eter values. Table 5 shows power results for model 1
under EDSP sampling, table 6 shows the results for
model 1′ under EDSP sampling, and tables 7 and 8 give
the corresponding results for MDSP sampling. The type
I error was correct for all of these sensitivity studies
(results not shown).

For the EDSP samples from model 1 (table 5), mis-
specification of the trait parameters has no significant
effect on the power of the group C statistics. This is
because almost all of the power is coming from the IBD-
sharing information, which does not depend on the pa-
rameters. Under model 1′ (table 6), the power is slightly
more sensitive to parameter misspecification. This does
not affect IBD2 and COMPOSITE2, because they do
not use the parameter estimates. Note that misspecifi-
cation actually increases power in some cases, presum-
ably because the population trait value is the optimal
choice only under normality assumptions.

Misspecification of the parameters has a larger effect
for MDSP samples. Under model 1 (table 7), misspeci-
fication of the correlation or the variance does not have
much effect, but misspecification of the mean can reduce
the power of S&P2 and SCORE3, making COMPOS-
ITE2 the most powerful statistic. Under model 1′ (table
8), misspecification of the variance or the correlation
hurts the power of S&P2 and SCORE3 slightly, and
misspecification of the mean cuts the power of those two
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Table 6

Power for EDSP Samples—Sensitivity Analyses under Model 1′

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �3.37 m p .73 2j p 2.10 2j p 8.38
CORRECT POPULATION

PARAMETER VALUES

Group A:
IBD2 .81 .81 .81 .81 .81 .81 .81

Group B:
ORIGINAL.HE .05 .05 .05 .05 .05 .05 .05
TRAIT.SUM .01 .01 .00 .02 .01 .01 .01
TRAIT.PRODUCT .07 .07 .04 .08 .07 .07 .07
XU .06 .06 .00 .08 .06 .06 .06
S&P1 .07 .06 .05 .06 .06 .06 .06

Group C:
S&P2 .84 .79 .76 .78 .81 .79 .81
SCORE3 .82 .77 .75 .76 .79 .77 .78
COMPOSITE2 .66 .66 .66 .66 .66 .66 .66

Table 7

Power for MDSP Samples—Sensitivity Analyses under Model 1

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �1.75 m p .15 2j p .45 2j p 1.8
CORRECT POPULATION

PARAMETER VALUES

Group A:
IBD2 .41 .41 .41 .41 .41 .41 .41

Group B:
ORIGINAL.HE .38 .38 .38 .38 .38 .38 .38
TRAIT.SUM .00 .00 .00 .06 .00 .00 .00
TRAIT.PRODUCT .34 .34 .03 .39 .34 .34 .34
XU .03 .03 .05 .38 .03 .03 .03
S&P1 .36 .38 .26 .45 .37 .37 .37

Group C:
S&P2 .71 .73 .60 .75 .72 .73 .73
SCORE3 .71 .73 .59 .74 .72 .72 .72
COMPOSITE2 .73 .73 .73 .73 .73 .73 .73

statistics substantially. COMPOSITE2 is clearly the sta-
tistic with the most robust power for model 1′.

If one is adopting parameter estimates from a previous
study, then it is likely that all three parameters will be
incorrect by at least some margin. Since COMPOSITE2
and IBD2 do not use any parameter estimates, they
should also be the most robust statistics for MDSPs and
EDSPs, respectively, when there are errors in more than
one parameter estimate. We did a limited study of the
effects of misspecifying two parameters at a time. De-
tailed results are not shown, but the general qualitative
result was that power was driven by how badly the mean
was misspecified. This is consistent with the “one pa-
rameter wrong” runs described above, in which the
mean had, by far, the greatest effect on power.

Discussion

We have reviewed a number of new sibling-pair QTL-
mapping statistics and have investigated their appro-

priateness for discordant sibling pairs. For EDSPs, the
best of the new statistics has only slightly higher power
than the traditional IBD-sharing statistic, and the IBD-
sharing statistic has the advantage of not depending on
parameter estimates. For MDSPs, however, the statistics
that combine IBD-sharing information and correlation
information (i.e., the group C statistics) substantially
outperform the IBD-sharing statistic. Of the group C
statistics, COMPOSITE2 appears to be the most robust,
having the highest power for nonnormal models and
being independent of trait parameter estimates.

Our results for EDSPs and MDSPs are interesting,
but they are only a small part of the story. The real
importance of our results lies in two general conclusions
that can be reached: the first is that any studies that use
multiple-proband ascertainment would probably ben-
efit from use of group C–type statistics; the second is
that the existence of the group C statistics makes it
possible to explore entirely new experimental designs.
When the only statistic for discordant pairs was IBD
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Table 8

Power for MDSP Samples—Sensitivity Analyses under Model 1′

STATISTIC

POWER, ASSUMING

r p .1 r p .5 m p �3.37 m p .73 2j p 2.10 2j p 8.38
CORRECT POPULATION

PARAMETER VALUES

Group A:
IBD2 .45 .45 .45 .45 .45 .45 .45

Group B:
ORIGINAL.HE .10 .10 .10 .10 .10 .10 .10
TRAIT.SUM .00 .00 .00 .00 .00 .00 .00
TRAIT.PRODUCT .14 .14 .05 .20 .14 .14 .14
XU .10 .10 .01 .34 .10 .10 .10
S&P1 .12 .10 .07 .21 .11 .11 .11

Group C:
S&P2 .49 .40 .17 .38 .45 .37 .43
SCORE3 .48 .40 .17 .37 .44 .36 .42
COMPOSITE2 .49 .49 .49 .49 .49 .49 .49

sharing, the range of designs was limited essentially to
different definitions of extreme discordance, but, with
statistics that have robust ability to draw power from
both the IBD sharing and the IBD/trait-value correla-
tion, a much broader range of designs is possible. We
have promoted the MDSP design as an option that
might have the right balance of power and ease of as-
certainment for some studies, but there are many other
possibilities as well.

One way to think about new designs is to derive
optimal designs for particular trait models. This ap-
proach was taken by Purcell et al. (2001), using the
ascertainment-corrected variance-components statistic
of Sham et al. (2000). Given a trait model, they iden-
tified the most informative 5% of pairs and showed that
the power of that ascertainment scheme was far higher
than that of other ways to choose 5% of pairs, even
when the assumed trait model was wrong. Their method
for identifying the most informative pairs could easily
be applied to more moderate selection (e.g., 15% or
30%) as well. The approach could be carried even fur-
ther by the assignment of ascertainment cost/difficulty
numbers to different pairs and the selection of pairs to
minimize total cost for a fixed amount of statistical
power.

A very different way to think about new designs is
to consider ascertainment schemes that are easy or con-
venient and study their power. For example, a low-effort
way to recruit discordant pairs might be to select ex-
treme probands that are already enrolled in a clinical
study and then recruit any siblings that are in, say, the
opposite half of the trait distribution. This could lead
to discordant pairs defined as one sibling in the top 10%
of the distribution and one sibling in the bottom 50%
of the distribution. With flexible statistics, such ascer-
tainment need not even be precise. For example, in the
hypothetical design just described, it is unlikely that a

clinically ascertained sample would actually be a ran-
dom sample of the top 10% of the distribution; rather,
it might be composed of any individuals whose trait
values were relatively high (without a uniform cutoff)
and whose physicians referred them. Using a statistic
such as S&P2 or SCORE3 frees us to consider designs
with such imprecise ascertainment without having to
worry about the validity of the statistical analysis.
COMPOSITE2 is probably not a good choice when
ascertainment is imprecise, because it depends on ar-
bitrary weights. The equal weights that we used per-
formed very well for MDSPs as defined by Forrest and
Feingold (2000), but the choice of good weights for any
other particular design would require some art and ad-
vance planning.

One type of “convenience sample” that deserves fur-
ther study includes affected sibling pairs already col-
lected for linkage studies of binary traits. Affected sib-
ling pairs can be considered concordant pairs for any
quantitative traits associated with the disease that they
were originally collected to study (e.g., glucose and in-
sulin levels for diabetes). Sibling pairs collected for link-
age have been used to map QTLs, but it has been done
with correlation-based statistics (e.g., see Watanabe et
al. 2000; Cai et al. 2001; Zhang et al. 2002). Such
studies might, in theory, have much higher power with
statistics, such as S&P2 and SCORE3, that can also get
information from the marginal IBD-sharing distribu-
tion. Again, we do not recommend COMPOSITE2 for
such nontraditional studies, because of the arbitrariness
of the weights. It is also not clear whether the ORIG-
INAL.HE is the right correlation-based statistic to form
the composite with for anything other than discordant
pairs. Huang and Jiang (2003) recently proposed a like-
lihood-based statistic for the incorporation of quanti-
tative-trait information into an affected-sibling-pair
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analysis, but it is not clear at this point how that method
compares to the ones discussed here.

We did not explicitly study EDAC designs, but we
believe that the same general results that we have shown
for discordant pairs will hold. We expect that S&P2
and SCORE3 will have high and robust power. We sug-
gest that variations on the EDAC design (e.g., choosing
moderately discordant and concordant pairs) can be ex-
plored with those statistics.

We also recommend further study of designs that use
larger sibships and even extended families that are se-
lected on the basis of two or more members with ex-
treme phenotypes. As long as the selection is based on
two or more people, the alternative-hypothesis IBD
sharing is affected, and it is almost certainly beneficial
to use a statistic that can capture that information.
There is plenty of evidence that larger sibships are more
powerful than sibling pairs, even in the context of dis-
cordant designs. Alcais and Abel (2000) and Tang and
Siegmund (2001) both showed that, if one has ascer-
tained a discordant sibling pair, then it is most efficient
to also use any other siblings in the sibship—more ef-
ficient than recruiting another independent discordant
pair. The score statistics extend in a natural way to
larger sibships and extended pedigrees and are probably
the logical choice for studying and analyzing such de-
signs. One problem that arises when a combination of
pedigree types is used is that there may no longer be a
good way to calculate an empirical variance of the IBD
sharing in order to form a statistic that has the correct
type I error. The statistic of Sham et al. (2002) attempts
to deal with this problem.

In summary, the statistics that we have investigated
should open the door to a new era of studies using
multiple-proband designs. The difficulty in recruitment
of EDSPs has, for the most part, kept such designs off
the drawing board for the past few years, but it is now
time for a renewed look at the possibilities.
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